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Abstract

Proposed Approach

Experimental Results

Safety is non-negotiable for autonomous
robots operating in dynamic environments.
As autonomy scales, we want to close the
gap between safety and real-time efficient
control. Hamilton Jacobi (HJ) Reachability
is a powerful method for analyzing safety,
but it is hard to compute in real-time with
dynamic obstacles. We propose a method of
computing reachability for local regions in
a receding fashion, thus saving compute
power and time while being safe.

Background &

Motivation

Model Predictive Path Integral (MPPI) is
widely used to produce fast trajectories in
nonlinear systems. However, standard
MPPI lacks safety reasoning, making it
vulnerable in safety-critical scenarios
involving dynamic obstacles or rare but
dangerous events. To address this, we
integrate risk-aware safety filters—notably
receding Hamilton-Jacobi (HJ) reachability

and Control Barrier Functions (CBFs)--into
the MPPI framework.

Fig. 1: (a) showcases MPPI-CBF with the standard global signed
distance value function. (b) showcases MPPI-CBF with receding H]J
reachability method which computes the safe sets for a time horizon
within the local map. Both the subfigures are taken at for the same
timestep.

With a receding local approach to HJ
reachability, this patch-wise solution
reduces computation, enables adaptation
to dynamic environments, and maintains
safety immediately ahead of the robot.

Core Concept:
e Baseline method

o MPPI with CBF safety filter.
e LExtension

o Baseline + Receding HJ

Algorithm 1 Receding Horizon HJI-MPPI Planning

Require: Global value function Vgioba1, time horizon T, initial state xg
Ensure: Executed trajectory of the agent
0: X Xp
0: while not GOALREACHED(x) do
0:  (Viocal; Giocal) < EXTRACTLOCALPATCH(Vobal, X)
T+ 0
while 7 < T do
Viocal <~ HII_BACKWARD_UPDATE(Vigcal, Glocal)
T T+ At
end while
u <— MPPI_CONTROL(X, Viocal)
x < STEPDYNAMICS(x, u)
Valobal ¢~ UPDATEGLOBALVALUE(X, Vgiobal)
0: end while
0: return Trajectory =0
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Eq. 1: Backward Reachability Tube (BRT) for a local region.

u* = argmin ||u — Unom||3
s.t. Vb(z)' f(z,u) > —a(b(z))

Eq. 2: Control Barrier Functions (CBF) based safety filter. Project
nominal control u,,, onto the set of inputs that keep the system
within a safe set defined by b(x) > 0 .
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Eq. 3: Model Predictive Path Integral (MPPI) update rule. Compute
control u; as a weighted average of noise perturbations.
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Fig. 2: Execution Speed comparison between baseline & variants.

Baseline+ Global HJI

Collisions vs Number of Obstacles

6 —e— MPPI + CBF + receding HJI
~=- MPPI + CBF

—« MPPI + CBF + global HJl
5- -

Number of Collisions

Number of Obstacles

Fig. 3: Collisions vs number of obstacles for baseline & variants.

Conclusion

Takeaways:

e Algorithmic and mathematical way to to
reason about safety and goal-directed
behavior under worst-case disturbances

e Potential to integrate reachability based
algorithms close to real-time.

Future Work:

e Since the local reachability solution may
be suboptimal due to incorrect
boundary conditions for long time
horizons, function approximators can be
used to mitigate this problem.




